
 Hard Diffraction at HERA

Mark Strikman 
PSU 

EIC Collaboration meeting 
 LBL 12/12/08



Outline

Hard inclusive diffraction  at HERA - success of QCD factorization 

Open questions,puzzles

Gluon fluctuations in nucleons

(Semi) Exclusive  processes

Did HERA observed LO BFKL?



Studies of the diffraction at HERA stimulated derivation of new QCD factorization theorems.  In 
difference from derivation in the  inclusive case which  used closure, main ingredient is color 
transparency property of QCD

π + T (A, N) → jet1 + jet2 + T (A, N) Frankfurt, Miller, MS 93 & 03

γ∗ + N → γ + N(baryonic system)

γ∗L + N → ”meson”(mesons) + N(baryonic system)

D.Muller 94 et al, Radyushkin 96, Ji 96, Collins &Freund 98

Brodsky,Frankfurt, Gunion,Mueller, MS
 94- vector mesons, small x

Collins, Frankfurt, MS 97 -  general caseprovide  new effective tools for study 
of the 3D hadron structure,  high 
energy color transparency and 
opacity and chiral dynamics

Exclusive processes

Fragmentation  processes including diffraction
Proof in QCD - Collins 98



 Diffractive phenomena - inclusive diffraction and measurement of 
diffractive pdf’s 

Collins factorization theorem:  consider  hard processes like 

one can define conditional (fracture - Trentadue &Veneziano) parton distributions

Theorem:    xIP, tfor fixed              universal fracture pdf  + the evolution is
 the same as for normal pdf’s

4

γ∗ + T → X + T (T ′), γ∗ + T → jet1 + jet2 + X + T (T ′)

f Dj (
x
xIP

,Q2,xIP, t)

xTf = 1− xIP

β≡ x/xIP

(T)

Theorem violated in dipole model of diffraction in several ways
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fD
j (

x

xIP
, Q2, xIP , t) = fIP/p(xIP , t)(fj/IP (β, Q2) + fIR/p(xIR, t)(fj/IR(β, Q2)

Additional assumption to reduce number of free parameters in the fits -
 soft Regge factorization:



☞ Measurement of F2
D(4)

Very good for j=q,  good for j=g for small and medium β from scaling violation

☞ Measurement of dijet production

Very good for j=g especially for medium and large β.  However only large Q2 

☞ Diffractive charm  production

Very good for j=g . Feasible for medium and large β and at moderate Q2 . 
However statistical accuracy is not as good.

Good consistency between H1 and  ZEUS



Fig. 8: Left: the diffractive structure function of the proton as a function of β (from [7]). Right: the structure function of the

proton as a function of xB (from [8]). The two highlighted bins show the different shapes of F D
2 and F2 in corresponding

ranges of β and xB at equal Q
2.

Fig. 9: Left: the diffractive structure function of the proton as a function of Q2 (from [7]). Right: the structure function of the

proton as a function of Q2 (from [9]).
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Different scaling violation at large x/β - signal for importance of 
gluons in diffraction



Different methods of measurements  by H1 and ZEUS agree with ~10% accuracy





Dijet production

Agrees with QCD factorization. Allows to constrain
 gluon dPDF especially at large β zIP ≡ z ≡ β



(68), (69) and (70). The χ2 fit to the experimental values of F D(3)
2 determines the free

parameters of the fit: nIR, αIP (0), Aj , Bj and Cj.

The 2006 H1 analysis of hard diffraction in DIS ep → eXY (Y denotes products of
dissociation of the proton) [40,41] is based on its own data sample, which covers the
following kinematics: 8.5 ≤ Q2 < 1600 GeV2, 0.0003 < xIP < 0.03, 0.0017 < β < 0.8,
|t| < 1 GeV2. Since the diffractive events were reconstructed using the rapidity gap
selection method, the proton was allowed to dissociate into states with a low invariant
mass, MY < 1.6 GeV.

The results of the H1 QCD fit in terms of the quark and gluon PDFs, fu/IP and fg/IP , at
Q2 = 2.5 GeV2 as functions of β are presented in Fig. 18. The solid curves correspond to
fit B; the dashed curves correspond to fit A. The main difference between fits A and B
is that while the parameters Aj , Bj and Cj in Eq. (70) are free in fit A, Cg = 0 for the
gluon PDF in Fit B.
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Fig. 18. The quark and gluon PDFs at Q2 = 2.5 GeV2 as functions of β.

The need to have two types of fits is explained by the fact that the gluon diffractive PDF is
determined from the scaling violations of F D(3)

2 . However, at large β, the scaling violations
of F D(3)

2 are predominantly determined by the quark diffractive PDFs. Therefore, the gluon
diffractive PDF at large β is very weakly constrained by the data, which allows (requires)
to consider two scenarios (fit A and fit B) of the gluon diffractive PDFs with different
behavior in the large-β limit, see the right panel of Fig. 18.

One should also mention that both fits correspond to very similar values of αIP (0) and
nIR:

Fit A : αIP (0)= 1.118 ± 0.008 , nIR = (1.7 ± 0.4) × 10−3 ,

36
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The quark and gluon diffractive 
PDFs at Q2 =2.5 GeV2 as a 

function of β 

gluon dPDF >> quark dPDF

QCD factorization for diffraction allows to determine in a model independent way 
LT shadowing for nuclear pdfs - LF & MS & Guzey - Guzey’s talk later today



ZEUS08

ZEUS08

06

Very good agreement 
between current ZEUS 
and H1 data for  t-slope

08

B=7 ±0.3 GeV-2

ZEUS08



Diffraction in the quark channel is pretty modest - 10- 15%  - far from black regime and 
αIP  dependence is very close to that of soft processes  - close to expectation of the 
aligned jet model + QCD evolution - H. Abramowicz, LF & MS 95

Fit B : αIP (0)= 1.111 ± 0.005 , nIR = (1.4 ± 0.4) × 10−3 . (71)

As seen from Fig. 18, the gluon diffractive PDF is much larger than the quark one. We shall
later show that this will lead to the prediction that the leading twist nuclear shadowing
for the gluon nuclear PDF is larger than that for the quark nuclear PDFs.

In the analyses [40,41], the PDFs of the subleading Reggeon exchange, fj/IR, are taken to
be those of the pion [90]. The β and Q2-dependence of fj/IR(β, Q2) are given by the fit to
the πN → J/ΨX and πN → µ+µ−X data.

Both Fits A and B correspond to a good description of the H1 data on hard inclusive
diffraction in DIS over the entire kinematic range [40]. The subleading Reggeon contri-
bution is required only at the large-xIP end of the covered range: xIP > 0.01. An example
of the good agreement between the H1 data [40] and its perturbative QCD description is
presented in Fig. 19 (taken from [40]). The figure shows the reduced cross section mul-

tiplied by xIP , xIPσD(3)
r ≈ xIP F D(3)

2 , as a function of β at fixed xIP = 0.001 for a wide
range of Q2. The solid curves correspond to fit A in the kinematic region used in the fit,
Q2 > 8.5 GeV2 and β < 0.8. The dotted curves correspond to the extrapolation of fit A
beyond the kinematic region used in the fit.
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Fig. 19. The perturbative QCD description of the H1 LRG diffractive data on
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2 . The figure is from [40].
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(68), (69) and (70). The χ2 fit to the experimental values of F D(3)
2 determines the free

parameters of the fit: nIR, αIP (0), Aj , Bj and Cj.

The 2006 H1 analysis of hard diffraction in DIS ep → eXY (Y denotes products of
dissociation of the proton) [40,41] is based on its own data sample, which covers the
following kinematics: 8.5 ≤ Q2 < 1600 GeV2, 0.0003 < xIP < 0.03, 0.0017 < β < 0.8,
|t| < 1 GeV2. Since the diffractive events were reconstructed using the rapidity gap
selection method, the proton was allowed to dissociate into states with a low invariant
mass, MY < 1.6 GeV.

The results of the H1 QCD fit in terms of the quark and gluon PDFs, fu/IP and fg/IP , at
Q2 = 2.5 GeV2 as functions of β are presented in Fig. 18. The solid curves correspond to
fit B; the dashed curves correspond to fit A. The main difference between fits A and B
is that while the parameters Aj , Bj and Cj in Eq. (70) are free in fit A, Cg = 0 for the
gluon PDF in Fit B.
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Fig. 18. The quark and gluon PDFs at Q2 = 2.5 GeV2 as functions of β.

The need to have two types of fits is explained by the fact that the gluon diffractive PDF is
determined from the scaling violations of F D(3)

2 . However, at large β, the scaling violations
of F D(3)

2 are predominantly determined by the quark diffractive PDFs. Therefore, the gluon
diffractive PDF at large β is very weakly constrained by the data, which allows (requires)
to consider two scenarios (fit A and fit B) of the gluon diffractive PDFs with different
behavior in the large-β limit, see the right panel of Fig. 18.

One should also mention that both fits correspond to very similar values of αIP (0) and
nIR:

Fit A : αIP (0)= 1.118 ± 0.008 , nIR = (1.7 ± 0.4) × 10−3 ,

36Current fits to soft hadron - 
hadron interactions find   
αIP(0)=1.09 - 1.10

☛Diffraction at HERA is due to
 the interaction of hadron size 
components of γ* not small dipoles

13

α′
IP (ZEUS) = −0.01± 0.06(stat) + 0.04− 0.08(syst)GeV −2

α′
IP (H1) = 0.06 + 0.19− 0.06GeV −2

Traditional  soft value α′
IP (soft) = 0.25GeV −2

H1

α′
IP (HERAexclusive) = 0.12GeV −2But

αIP soft and 
independent of Q



Diffraction at HERA is governed by scattering of configurations which interact in a soft 
way - but evolve via DGLAP evolution to larger Q.  Contribution of small dipoles is small.

To characterize the strength of interaction we can use factorization 
theorem to define probability

Pj(x, Q2) =

∫
fD

j ( x
xIP

, Q2, xIP , t)dtdIP

fj(x, Q2)

g

!" !"

PP

X
MX

M

NNNN

q
_

or  gluons:quarks:   

q g

*
3

3

8

8

If the interaction in the gluon sector at small x reaches strengths close to
the unitarity limit we should expect that Pg is rather close to 1/2 and
much larger than Pq.

M.Strikman

of diffractive gaps induced by scattering off parton j



A.J. Baltz et al. / Physics Reports 458 (2008) 1–171 59

Fig. 44. The probability of hard diffraction on the nucleon, P j
diff, defined in Eq. (64), as a function of x and Q2 for u quarks (left) and gluons

(right).

Fig. 45. The probability of hard diffraction, P j
diff, on 40Ca and 208Pb, at Q2 = 4 GeV2 as a function of x for u quarks (left) and gluons (right).

the LHC, similar to inclusive production, considered in Ref. [142]. Dijet production is another alternative, studied by
ZEUS [143] and H1 [97] using protons.6

The discussion presented here is relevant for hard processes produced in direct proton interactions. Spectator parton
interactions will suppress the probability of diffraction for resolved photons. Estimates [144] indicate that spectator
interactions will decrease the probability of nuclear diffraction by at least a factor of two for A ∼ 200. Thus, the A
dependence of diffraction with resolved photons will also be interesting since it will measure the interaction strength
of the spectator system with the media, providing another handle on the photon wavefunction.

6 The recent HERA data seem to indicate that the factorization theorem for direct photoproduction holds at lower transverse momentum for
charm production than that for typical dijet production.

 The probability of hard diffraction on the nucleon, P j diff as a function of x and Q2 
for u quarks (left) and gluons (right) based on the current HERA data. 

Black limit

Evidence for onset of 
BDR at HERA for gluons 

at Q=2 GeV

Guzey et al

Warning - curves for x < few •10-4 is extrapolation of the fits.  

For gluon channel B=7 GeV-2  leads to impact factor  Γgg(b=0, Q2=4 GeV2) ∼ 1
 for x ~10-3  ⇒  new regime? increase  of B?

Consistent with analysis of the exclusive processes at HERA 



Γh(s, b) =
1

2is(2π)2

∫
d2"q exp(i"q ·"b)AhN (s, t)

Rogers et al 04
used information about J/psi
 photo production at FNAL
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Two interesting topics which I  can discuss only very briefly. 

Hard diffraction induced by real photon γ + p→ jet1 + jet2 + X + p

generic jets or 
containing D-mesons

important variable xγ - fraction of the photon + component carried by 2 jets

xγ =1  - direct photons;   xγ <0.9  - resolved  photons

Naive expectation - factorization should work for direct photons and cross 
section should be suppressed for resolved photon.

☛ Ejet < 7 GeV

☛ Ejet > 10 GeV

direct resolved charm
suppr. ~0.5 suppr. ~0.5

suppr. ~0.5factorization

factorization

puzzle, especially since for 
Q2> few GeV2 no suppression

}Need a better theory?



Production of neutrons in DIS in the nucleon fragmentation region

Collins factorization theorem is applicable and appears to hold.
Two scenarios of neutron production suggested for small x: 

● Pion (heavier meson) exchange  - starting 
from Sullivan 71  Measure pion pdfs ?! With 
realistic πNN form factors ρ is a must to 
fit the data

p n

π (ρ)

●

γ*

Fragmentation after removal of small x parton, Koepf et al 97. Matching to soft 
dynamics - lack of long range correlations -  neutron multiplicity for the limit
x/(1-xF) << 1 is the same for quark and gluon removal and similar to soft processes

xF

HERA 
data

Neutron spectra in soft and hard processes are very similar (up to 
small shadowing effects for soft case)☝

☝ Similar for quark and gluon removal -  very difficult for meson models, 
predicted by fragmentation approach - another evidence for  smooth 
soft - hard connection.
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Peripheral 
pp collisions Central  

pp collisions 
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〈
ρ2

〉
g

=
∂

∂t

G(x.t)
G(x, 0)

Interplay of hard and soft interactions in pp collisions, rate of multiple hard collisions is determined by 
the value of <ρ2g> as compared to much larger radius of soft interactions. Note PYTHIA assumes  
<ρ2g>=<ρ2q> x independent and a factor ~ 2 smaller than given by analysis of GPDs from J/ψ 
production 

〈
ρ2

〉
e.m. pions
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Few comments on “ classical” hard exclusive processes at HERA  - 
complementing M.Diehl & A.Sandacz talks

Small x GPDs -
 link to LHC



DVCS - another evidence for soft boundary condition

 Analysis of L.Schoeffel, 07 of R - ratio of DVCS and diagonal amplitudes at t=0 (uncertainties in 
PDFs are canceled)

R =
ADV CS(W,Q2, t = 0)

Aγ∗p→γ∗p(W,Q2)
Predictions:

Soft boundary condition

R=2 and slowly increasing with Q

Black disk regime

R=1  for Q2 < Qs2

Freund, Frankfurt, MS  97

Black disk regime

R=1  for Q2 < Qs2

Guzey et al 01

relations to a good approximation, better that 10 %. Then, we do not face the problem mentioned in Ref. [26].
Namely, the ratio of real to the imaginary parts of the DVCS amplitude, ρ, can be calculated from the amplitudes
determined in the model or using dispersion relations. In this last case, we can write ρ ! tan(πλ/2), where λ = λ(Q2)
is the effective power of the Bjorken xBj dependence of the imaginary part of the amplitude. Hence, in the range of
H1 and ZEUS data, for Q2 > 4 GeV2, we use this property to correct the skewing factor extracted from the data. In
this case, we estimate of the real part contribution by using the effective power for the inclusive deep inelastic reaction
taken from Ref. [28]. For the theory prediction, we use the real part of the DVCS amplitude as derived following the
model of section II. Finally, for the kinematic window available at HERA, the typical contribution of the term in ρ2

to Eq. (5) is of the order of 10 %.
Considering the calculation discussed above, we can rewrite the skewing factor as a function of the cross sections

for DIS (σT ) and DVCS :

R =
4

√

π σDV CS b(Q2)

σT (γ∗ p → X)
√

(1 + ρ2)
=

√

σDV CS Q4 b(Q2)
√

π3 αEMFT (x, Q2)
√

(1 + ρ2)
, (6)

Main theoretical uncertainties come from the t-slope, b(Q2), given in section II. Results are shown in Fig. 4, where a
good data/model agreement is observed within errors.

On the skewing factor, we can exemplify the part of the skewing arising from the kinematic of the DVCS process
and from the Q2 evolution itself. Then, we apply the forward ansatz, used at the initial scale 1.3 GeV in the model

described in section II, at all values of Q2. It means that we impose the parametrisation HS(X, ζ; Q2) ≡
qS(X−ζ/2

1−ζ/2
;Q2)

1−ζ/2

in the DGLAP domain for all values of Q2, and similar relations for valence and gluon distributions. As illustrated
in figure 4, the measurements show that such an approximation, which only takes into account the kinematical
skewedness, is not sufficient to reproduce the total skewing effects generated by the QCD evolution equations.
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FIG. 4: Skewing factor R ≡ ImA (γ∗ + p → γ + p)
˛

˛

˛

t=0

/ImA (γ∗ + p → γ∗ + p)
˛

˛

˛

t=0

extracted from DVCS and DIS cross

sections as explained in section III. The GPD model is also displayed and gives a good agreement of the data (full line). The
forward ansatz model, used at all values of Q2, fails to reproduce the total skewing effects generated by the QCD evolution
(dashed line) -see text-.

IV. BEAM CHARGE ASYMMETRY (BCA) AT HERMES AND COMPASS

The determination of a cross section asymmetry with respect to the beam charge, (dσ+ − dσ−)/(dσ+ + dσ−), has
been realised by the HERMES experiment [21] for xBj ! 0.1, Q2 ! 3 GeV2 and |t| < 0.7 GeV2. The interest of this

FDS03
fwd ansatz FDS= Freund et al  - NLO 

with soft boundary condition



Implications for color transparency studies with nuclei
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Figure 28: The value of the slope b from a fit of the form dσ/d|t| ∼ e−b|t| for the
reaction γ∗p → ρ0p, as a function of Q2. The lines are the predictions of models
as denoted in the figure (see text).
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Drop of  the t -slope  B (                             ) 
 is well reproduced by dipole  models (in case of 

FKS actually a prediction of 10 years ago)
dσ
dt

= Aexp(Bt)

B(Q2)−B2g

B(Q2 = 0)−B2g
∼ R2(dipole)

R2
ρ

R2(dipole)(Q2 ≥ 3GeV 2)
R2

ρ

≤ 1/2

Convergence of B for  ρ-meson electroproduction to the slope of  J/psi 
photo(electro)production - direct proof of squeezing.  

Expect significant CT effects for meson production for Q2 ≥ 3GeV2

sensitivity already  at Jlab  6 &12
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5 sigma signal in data

New ZEUS 240 pb-1 two data points

NLO calculations done by Ivanov, Krasnikov, 

Szymanowski (IKS)[hep-ph/0412235]

MRT – Martin, Ryskin, Teubner, based on 

CTEQ6.5M gluon.

MNRT – Martin, Nockles, Ryskin, Teubner, based 

on diffractive J/" data alone.

FMS

FMS - Frankfurt, 
McDermott, Strikman 98
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2. QUARKONIUM PRODUCTION

In the leading order of the relativistic expan-
sion the meson mass can be taken as twice the
heavy quark pole mass, (q′)2 = M2 and M = 2m.
p2 = p′2 = m2

N , where mN is the proton mass.
The photon polarization is described by the vec-
tor eγ , (eγq) = 0. The invariant c.m. energy is
sγp = (q + p)2 = W 2. We define

∆ = p′ − p , P =
p + p′

2
, t = ∆2 ,

(q − ∆)2 = (q′)2 = M2 , ζ =
M2

W 2
, (3)

At |t| " M2 the factorization formula reads

M =
4π

√
4πα eq(e∗V eγ)

Nc ξ

(

〈O1〉V
m3

)1/2
1

∫

−1

dx ×

[

Tg(x, ξ)F g(x, ξ, t) + Tq(x, ξ)F q,S(x, ξ, t)
]

,

F q,S(x, ξ, t) =
∑

q=u,d,s

F q(x, ξ, t) . (4)

as the sum of the gluon, F g(x, ξ, t), and the
quark, F q(x, ξ, t), GPDs contributions. GPDs
are defined as a functions which parametrized the
matrix elements of the renormalized light-cone
quark and gluon operators. The polarization vec-
tor of quarkonium is eV , variable ξ = ζ/(2 − ζ)
parametrizes the non vanishing longitudinal mo-
mentum transfer in the process.

The hard scattering amplitude Tg(x, ξ) (or
Tq(x, ξ)) represents essentially the on-shell parton
amplitude for the scattering of a pair of gluons
(quarks) which are collinear to the proton mo-
mentum and have the fractions (x + ξ)/(1 + ξ)
and (x−ξ)/(1+ξ). Calculated in the dimensional
regularization method these one-loop amplitudes
contain poles, the infrared collinear and the ultra-
violet singularities. The full renormalization pro-
cedure includes mass counterterm diagrams, the
renormalization of the heavy quark field and the
renormalization of the strong coupling. The fac-
torization of collinear singularities is achieved by
the replacement of the bare GPDs by the renor-
malized ones. This procedure leads to the finite

results for Tg(x, ξ) and Tq(x, ξ) at NLO

Tq(x, ξ) =
α2

S(µR)CF

2π
fq

(

x − ξ + iε

2ξ

)

, (5)

Tg(x, ξ) =
ξ

(x − ξ + iε)(x + ξ − iε)
× (6)

[

αS(µR) +
α2

S(µR)

4π
fg

(

x − ξ + iε

2ξ

)]

,

here CF = 4/3. The functions fq and fg (see [5])
contain terms ∼ ln(m2/µ2

F ).
The dependence of NLO hard scattering am-

plitudes on µF compensates partially the effect
of the evolution of GPDs with factorization scale
(the dependence of Tg, Tq and GPDs on µF in
(4) is not shown for shortness). That leads to
the substantial reduction of the scale ambiguity
of the theoretical predictions in NLO in compar-
ison with leading order (LO), see Fig. 1
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Figure 1. The cross section of the Υ photopro-
duction; the predictions at LO (upper figure) and
NLO (lower figure) for the scales µF = µR =
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[8]. For the t− dependence we assumed exponen-
tial with the slope parameter b = 4.4 GeV−2.
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Strong dependence of 
NLO result on μR. Data  
described for very small μR 

Theoretical argument - what is better accurate account of geometry of dipole 
interactions in VM production or NLO calculation?  Υ - smallest dipole available.

open questions - energy conservation 
and related issues with gauge 
invariance. treatment of the meson  
wave function



Novel way to use hard VM production: measuring  gluon fluctuations in nucleons

 MS + LF + C.Weiss, D.Treleani PRL 08

Reminder - soft inelastic diffraction at =0

|h〉 = a1 |1〉 + a2 |2〉 absorber with 
same absorption 
for “1” and “2”

|final〉 = λ(a1 |1〉 + a2 |2〉) = λ |h〉

only elastic scattering

|h〉 = a1 |1〉 + a2 |2〉 absorber with 
different  absorption 

for “1” and “2” elastic scattering 
+inelastic diffraction

|final〉 = λ1a1 |1〉 +2 a2 |2〉)
= c1 |h〉 + c2 |h′〉

h h

h h+h’



Are there global fluctuations of the strength of interaction of a fast nucleon, 
for example due to fluctuations of the size /orientation 

Due to a slow space-time evolution of the fast nucleon wave function one can 
treat the interaction as a superposition of interaction of configurations of 
different strength - Pomeranchuk & Feinberg, Good and Walker, Pumplin  
&Miettinen (in QCD this is reasonable for total cross sections and for 
diffraction at  very small t)

N = 3q + 3qg + 3q+ ! + ...

● ●
● vs

●
● ●

rtr rtr

pN
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Convenient quantity -             -probability that nucleon interacts 
with cross section 

P(σ)
σ

If there were no fluctuations of strength - there will be 
no inelastic diffraction at t=0:

dσ(pp→X+p)
dt

dσ(pp→p+p)
dt

| t = 0
=

∫
(σ − σtot)2P (σ)dσ

σ2
tot

≡ ωσ variance
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Fig. 3: (a) Graphical representation of the cross section distributions in diffraction at the Tevatron and LHC energy.

The area of the inner and outer disk at given energy is proportional to , i.e., the average area repre-

sents the average cross section tot, the difference (ring) the range of the fluctuations . (b) The

–dependence of the total cross section tot (left –axis) and the dispersion (right –axis), as predicted by a

Regge–based parametrization of tot [10] and a parametrization of the inelastic diffractive cross section inel ,

measured up to the Tevatron energy [9]. The weak energy dependence of the width of the ring in figure (a) reflects the

slow variation of the diffractive cross section with energy.

order–of–magnitude of the effect, as well as its energy dependence. Our basic assumption is that

the strength of interaction in a given configuration is proportional to the transverse area occupied

by color charges. To implement this idea, we start from the cross section distribution at

fixed–target energies ( GeV ), which can be related to the fluctuations of the size of

the basic “valence quark” configuration in the proton wave function and is known well from the

available data [7]. We then assume that

(a) The parton density is correlated with the parameter characterizing the size of the inter-

acting configuration. One simple scenario is to assume that the parton density changes

with the size of the configuration only through its dependence on the normalization scale,

config . This is analogous to the model of the EMC effect of Ref. [11], and

leads to a simple scaling relation for the –dependent gluon density,

(6)

where GeV . In Higgs boson production one expects GeV , and

(LHC) (Tevatron) with GeV. An alternative scenario

— the constituent quark picture — will be discussed below.

(b) The size distribution in soft high–energy interactions is correlated with the parameter

characterizing the valence quark configuration. As a minimal model we assume that soft

interactions in a configuration with given is described by a profile function of the form

tot

with tot (7)
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(LHC) (Tevatron) with GeV. An alternative scenario

— the constituent quark picture — will be discussed below.

(b) The size distribution in soft high–energy interactions is correlated with the parameter

characterizing the valence quark configuration. As a minimal model we assume that soft

interactions in a configuration with given is described by a profile function of the form

tot

with tot (7)

Both small and large configurations grow. 
Periphery remains- still there is a 
correlation between σ and parton 
distributions -smaller σ,  harder quark 
distribution
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s= 2 TeV

→→

The 30 GeV curve is result of the analysis (Baym et al 93) of the FNAL diffractive 
pp and pd data which explains FNAL diffractive pA data (Frankfurt, Miller, MS 
93-97). The  14 and 2TeV curves are my guess based on matching with fixed target  
data and collider  diffractive data.

→ √
s = 14 TeV
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Strength of the gluon field should depend on the size of the quark configurations - for small 
configurations the field is strongly screened - gluon density much smaller than average.

Consider γ∗L + p→ V + X for Q2 > few GeV2

 Expand initial proton state in a set of partonic states characterized by the 
number of partons and their transverse positions, summarily labeled as  |n〉

|p〉 =
∑

n

an|n〉

Each configuration n has a definite gluon density G(x, Q2| n) given by the 
expectation value of the twist--2 gluon operator in the state |n〉

G(x, Q2) =
∑

n|an|2G(x, Q2|n) ≡ 〈G〉

In this limit the QCD factorization theorem (BFGMS03, CFS07) for these 
processes is applicable 



(dσel/dt)t=0 ∝
[∑

n|an|2G(x, Q2|n)
]2 ≡ 〈G〉2,

(dσdiff/dt)t=0 ∝
∑

n|an|2
[
G(x, Q2|n)

]2 ≡ 〈G2〉.

σinel = σdiff − σel

ωg ≡ 〈G2〉 − 〈G〉2

〈G〉2 =
dσγ∗+p→V M+X

dt

/
dσγ∗+p→V M+p

dt

∣∣∣∣
t=0

.

Making use of the completeness of partonic states, we find that the elastic(X = p)
 and total diffractive (X arbitrary) cross sections are proportional to

Hence cross section of inelastic diffraction is 

⇒



No official  numbers for t -slopes -  educ. guess
Bel /Binel ~ 3 ÷4   

⇒ ωg(Q2 ∼ few GeV2, x ∼ 10−3) ∼ 0.15÷ 0.2



2

soft diffractive processes. We introduce the concept of
a configuration–dependent parton density and follow its
implications for various types of high–energy scattering
experiments with hard processes. Our investigation pro-
ceeds in three stages. First, we relate the fluctuations
of the gluon density to the ratio of inelastic to elastic
hard diffraction in ep scattering (HERA, future EIC) in
a model–independent fashion. Second, we use a simple
model of color fluctuations in the nucleon to illustrate
and quantify our results. Third, we discuss the implica-
tions of color fluctuations for pp/p̄p collisions with multi-
ple hard processes (Tevatron CDF), and for rapidity gap
survival in double–gap exclusive diffractive pp scattering
(RHIC, Tevatron, LHC). A more detailed account of our
studies will be given elsewhere [? ].

Consider diffractive production of vector mesons in ep
scattering at Q2 >∼ few GeV2, γ∗L + p → V + X, where
the proton may remain intact or dissociate into a set of
hadronic states X. The proton state can be expanded
in a set of partonic states characterized by the number
of partons and their transverse positions, summarily la-
beled as |n〉: |p〉 =

∑
n an|n〉. Each configuration n has a

definite gluon density G(x,Q2|n), given by the expecta-
tion value of the twist–2 gluon operator in the state |n〉,
and the overall gluon density in the proton is

G(x,Q2) =
∑

n|an|2G(x,Q2|n) ≡ 〈G〉. (2)

Because the partonic states appear “frozen” on the typi-
cal timescale of the hard scattering process, one can use
QCD factorization to calculate the amplitude for the vec-
tor meson production process configuration by configu-
ration. The latter is (up to small calculable corrections)
proportional to the gluon density in that configuration
[? ]. An essential point is now that in the leading–twist
approximation the hard scattering process attaches to a
single parton, and, moreover, does not transfer momen-
tum to that parton. It thus does not change the partonic
state |n〉. Making use of the completeness of partonic
states, we find that the elastic (X = p) and total diffrac-
tive (X arbitrary) cross sections are proportional to

(dσel/dt)t=0 ∝
[∑

n|an|2G(x,Q2|n)
]2 ≡ 〈G〉2, (3)

(dσdiff/dt)t=0 ∝
∑

n|an|2
[
G(x,Q2|n)

]2 ≡ 〈G2〉. (4)

For the cross section of diffractive dissociation σinel =
σdiff − σel we thus obtain

ωg ≡ 〈G2〉 − 〈G〉2

〈G〉2 =
dσinel

dt

/
dσel

dt

∣∣∣∣
t=0

. (5)

This model–independent relation allows one to infer the
fluctuations of the gluon density from the observable ra-
tio of inelastic and elastic diffractive vector meson pro-
duction. It can be easily generalized to a large variety of
hard processes such as γ∗L + T → 2π (two jets) + T , or Υ
production in ultraperipheral pp collisions at LHC [? ].
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FIG. 1: The dispersion of fluctuations of the gluon density, ωg,
as a function of x for several values of Q2, as obtained from
the scaling model, Eqs. (??)–(??), and a phenomenological
parametrization of the gluon density.

Generally, relative fluctuations of the density decrease
if the number of constituents of a system increases. Thus,
we expect ωg to decrease slowly with increasing Q2 for
fixed x, and with decreasing x for fixed Q2. For the same
reason we expect ωg to be suppressed in scattering from
nuclear targets. Present experimental data on the cross
section ratio of Eq. (??) are very limited; they are consis-
tent with a weak dependence on Q2 (the effective scale in
vector meson production at HERA is Q2

eff ∼ 2− 4GeV2)
and the vector meson mass, and indicate a value of ωg of
the same magnitude as ωσ at comparable energies.

More quantitative studies of gluon fluctuations are pos-
sible within a dynamical model of nucleon structure.
Modeling the configuration dependence of parton den-
sities is a complex task, requiring detailed knowledge of
the nucleon’s partonic wave function. To study the pos-
sible magnitude of fluctuation effects and their x– and
Q2–dependence, we propose here a simple model based
on two assumptions: (a) The hadronic cross section of a
configuration moderate energies (

√
s ∼ 20 GeV) is pro-

portional to the transverse area occupied by the color
charges in that configuration, σ ∝ R2

config; (b) the par-
ton density changes with the size of the configuration
only through its dependence on the normalization scale,
µ2 ∝ R−2

config ∝ σ. The latter is similar to the “nucleon
swelling” model of the EMC effect [? ] and implies a
simple scaling relation for the σ–dependent gluon den-
sity:

g(x,Q2 |σ) = g(x, ξQ2), (6)

ξ(Q2) ≡ (σ/〈σ〉)αs(Q2
0)/αs(Q2) , (7)

where Q2
0 ∼ 1 GeV2. Assumption (b) then allows us to

The dispersion of fluctuations of 
the gluon density, ωg, as a function 
of x for several values of Q2, as 
obtained from the scaling model

Simple “scaling model”     based on two assumptions

● At moderate energies √s = 20 GeV  the hadronic cross section of a configuration is 
proportional to the transverse area occupied by the color charges in that configuration,

σ ∝ R2
config

● the normalization scale of the parton density changes proportionally to the size of the 
configuration µ2 ∝ R−2

config ∝ σ−1
(in the spirit of Close et al 83 - EMC effect model)

G(x, Q2 |σ) = G(x, ξQ2) ξ(Q2) ≡ (σ/〈σ〉)αs(Q2
0)/αs(Q2)

whereQ2
0 ∼ 1 GeV2

the model designed for small x < 0.01. There maybe 
other   effects which could contribute to ωg for large x

Warning: 

At the same time decrease of ωg with Q2 at x=const - generic effect

Gluon fluctuations have to be explored both theoretically and experimentally 
including implications for LHC final states



BFKL (Balitski, Fadin,Kuraev, Lipatov) regime at HERA  - fundamental question what 
is the energy dependence of the cross section of interaction of two small dipole

LO BFKL:   σ ∼ sδ  , δ ~ 0.5 - 0.6

NLO BFKL: δ ~ 0.2 - 0.25

xq,g

N

γ 
VM (ρ, J/ψ,γ)

X

regime of color opacity, a direct evidence is very limited, see however [?]. The rapidity gap
processes we discuss in this paper will provide additional handles to address these questions.

To probe this physics a number of small x processes which originate due to elastic scat-
tering of a parton and a small quark-antiquark (qq̄) color singlet dipoles (we will refer to
them in the following simply as dipoles) at large momentum transfer and at high energies
were suggested. This includes hard diffraction in pp→ pX process at large t, production of
two jets accompanied by rapidity gap-coherent Pomeron [?], the rate of production of two
back to back jets with a large rapidity gap in between [?] as compared to the rate of two jet
production in the same kinematics without rapidity gaps [?, ?], photo(electro) production
of vector mesons at large t with a rapidity gap [?, ?, ?]. Production of two jets with a gap
in between was studied experimentally at the Tevatron, see e.g. [?]. Over the last ten years
the theoretical and experimental studies were focused on the photo/electro production off
a proton. Studies of these processes at HERA resulted in the measurements of the rele-
vant cross sections [?, ?, ?, ?, ?] in a region of the photon-proton center of mass energies
20 GeV ≤ Wγp ≤ 200 GeV .

The HERA data agree well with many (though not all) predictions of the QCD motivated
models (several of which use the LO BFKL approximation[?]), see for example [?] and
references therein.

Clearly it would be beneficial to extend such study to higher Wγp and over a larger
range of the rapidity gap intervals to investigate how energy dependence of the small dipole
- parton scattering changes with t. Recently we demonstrated [?] that this will be possible
using quasireal photons in the ultraperipheral collisions (UPC) of protons with nuclei at
LHC.

Here we perform a more detailed analysis focusing on study of ρ meson photoproduction:

γ + p(A)→ ρ + rapidity gap + X, (1)

at large t and with a rapidity gap between ρ-meson and produced hadronic system X in
the proton-nucleus and nucleus-nucleus UPC at LHC. We consider the kinematics where the
rapidity gap interval is sufficiently large (≥ 4) to suppress contribution of the fragmentation
processes. Related physics can be investigated in the diffractive production of charm or two
jets separated by large rapidity gap from the nucleon fragmentation region. For example,
studies of the A-dependence of production of two jets in the processes like γ + A → (jet +
M1)+ rapidity gap+(jet+M2) will allow to check presence of the color transparency effects
in the gap survival in hard photon induced processes [?].

The CMS and ATLAS detectors are well suited for observing such processes since they
cover large rapidity intervals.

The main variables determining the dynamics of the process are the mass MX of system
produced due to the dissociation of proton target, the square of the transfered momentum
−t ≡ Q2 = −(pγ − pV )2, and the invariant energy of the qq̄- parton elastic scattering
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The choice of large t ensures two important simplifications. First,  the parton ladder mediating 
quasielastic  scattering  is attached to the  projectile  via two gluons. Second is that  attachment of the 
ladder to two partons of the target is strongly suppressed.  Also the transverse size ∝ 1/√-t

⎫



Recent analysis of Zhalov et al 08

For HERA cut of  MX2/W2 =const  most of energy dependence from 
gluon density - BKFL with δ ~ 0.1 - 0.2 is consistent with the data; soft 
Pomeron in this regime δ  = -0.5 is clearly out

EIC as good as HERA in terms of W’ range with proper detector - can work 
at much larger x ~ 0.2



Conclusions
Impressive progress in the studies of hard diffractive  
processes at HERA. Success of QCD factorization theorems 
for diffraction 

Connection to soft dynamics revealed

Key to further progress good instrumentation of the nucleon 
fragmentation region. Missed opportunities at HERA

Higher precision - new questions

Evidence for fluctuations of small x gluon field in nucleon
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Figure 28: The value of the slope b from a fit of the form dσ/d|t| ∼ e−b|t| for the
reaction γ∗p → ρ0p, as a function of Q2. The lines are the predictions of models
as denoted in the figure (see text).
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Drop of  B is well 
reproduced by dipole  
models (in case of FKS 
actually a prediction of 

10 years ago)
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Transverse  distribution of gluons can be extracted from 
  
 

⇒ γ+ p→ J/ψ+N


